Wednesday, 25 May 2016

4 Simple Tricks To Enhance Ultrasonic Cleaning


Arranging parts in an ultrasonic cleaner
It is always advisable not to place the components on the lowermost part of an ultrasonic tank. It would be similar to placing a thumb on a speaker diaphragm. Not only does it prevents the proper movement of the diaphragm but also tends to interfere with the ultrasonic energy that is generated. There are some basic issues that need to be taken care of while designing tanks for optimum ultrasonic cleaning efficiency.
The various components should be placed properly in a basket or work holder in an Ultrasonic Parts Washer that is specifically designed for each individual component. It is of special significance in high end cleaning systems where it is essential to achieve good cleaning of various components. Make use of a stainless steel basket because soft components tend to absorb the ultrasonic energy. Do not use plastic or other lighter materials. If the component is of a kind that is damaged easily, racks composed of stainless steel that come with Nylobond or Teflon coatings can be used in tanks for optimum ultrasonic cleaning efficiency.

How many parts can be cleaned in a tank?
The total space of components that are to be cleaned during ultrasonic cleaning should be less than the tank volume as measured in cubic inches which translates into about 50 square inches of cleaning area per liter of tank capacity. The volume of the tank should be such that when the object is placed into the basket there should be a minimum of 1.5 inches on each side and top and at least 2 inches of liquid on the bottom parts. The design of work fixtures and corresponding baskets is significant to a good cleaning process.
Should we filter the cleaning solution in the ultrasonic tank during ultrasonic cleaning?
It varies depending on the size of the tank in an Ultrasonic Parts Washer.  In case of a small tank, you may change the solution for a fresh one rapidly but a larger tank can require up to 2-3 hours for changing the solution and then reheating to the proper temperature. It would also be dependent on how much cleaning the components require. If high volume of cleaning is required, then a frequent changing of cleaning solution becomes necessary.
The solution to these issues is a filtration system that will help in re-circulating the cleaning fluid through a filter of the appropriate type which keeps re-circulating the solution and then returns it to the tank. Keep in mind the following things while using a filter system:
1. It is recommended that you make use of the filter at not more than 5-10 liters per minute (assuming a tank capacity of 100 liters) if you are using the ultrasonic simultaneously. Air will be introduced by the pump in a filter system and it can lower the ultrasonic activity if it is allowed to run at higher rates. It is always advisable to make use of filter between cleaning cycles.
2. Even if you make use of a filter, it is always suggested that the tank be emptied and cleaned as soon as the soap or other cleaning agent is exhausted.
3. Filters should be regularly changed.

Rinsing parts after cleaning in an ultrasonic tank
As a rule washing will enhance the end result but keep in mind that when you utilize a cleaner of any sort you will also be leaving a deposit of that cleaner on a component. The most ideal approach to expel this buildup is to flush in DI water spray as well as another Ultrasonic tank loaded with a nonstop over stream of Hot DI water. This will expel any hints of the cleaning substance.
Spray Rinse Tanks are intended to be somewhat bigger than the ultrasonic tank that is utilized. The splash is conveyed from 2 or more spray bars on the topsides of the tank. The channel is typically double the extent of the bay. As a rule a state of utilization DI water radiator is utilized to convey a hot spray wash. The tanks may be composed of Polypropylene or stainless steel.
At a point of use DI water warmer uses ceramic heaters to quickly raise the temperature of the DI water as it streams into the tank. A switch that is sensitive enough to the stream of water into the radiator activates the system as per demand. A definitive temperature will then be attained that is determined by the stream rate of the water and the force of the warmer. It must be estimated to the interest of the system.

Monday, 16 May 2016

Merits of an Aqueous Parts Cleaning System

Aqueous Based Systems


The alternative to Solvents is aqueous based systems, which use water or emulsions as a cleaning media. Emulsions are relatively simpler to handle, wash and recycle. But there are issues that are faced during the disposal of the emulsion waste when the media is to be cleaned.

All emulsions are categorised as water in oil or oil in water types. 
The emulsions are made of emulsifiers which have hydrophobic and hydrophilic ends.  When they are brought in contact with water, the hydrophobic end attaches itself to water molecule and the hydrophilic end is free and can easily attach itself to any oil, grease or similar contaminant. This helps in removal of the contaminant from the media or the substrate.

Emulsions are made by mixing water and the emulsifier under immense shear and pressure to create a colloidal solution that has a dispersion of emulsifiers in water. Emulsifiers have the same property as any hydrocarbon making it an ideal compound to be used in the cleaning. The emulsions are  also made of stabilisers, buffers and other chelating agents.
There are many advantages of using Emulsions. Temperature of washing can be increased and it can also be operated in an open system. It’s also compatible with most metals, non-metals, plastics and alloys. Most emulsions are stable over a wide range of ph, temperatures and can accommodate additives needed in the washing process.

However emulsions need a process of rinsing and subsequent drying. The rinsing is compulsory as we need to remove the detergents and soap remains from the component. This process is not required when dealing with a solvent based system.

A typical aqueous cleaner is 3 stage:  
1) Washing
2) Rinsing
3) Drying.

Most aqueous cleaning agents are made of various compounds to accommodate different processes.  They can incorporate Chelating agents, sequestering agents, anti-rust compounds, anticoagulants, buffers, stabilizers and other such compounds. These Chemistries are detailed in a different book.

 In summation it can be said that most metals clean and dry faster in solvent based systems, but we need to study the economics of using the solvent must be studied in detail. Aqueous technologies are safer, healthier and less expensive too.


Both Methods have disposal issues.  There is a change in the mind-set of existing users who are moving towards thee aqueous based solutions. Class 1 level of washing needs be augmented with a newer generation of chemicals.